

# International Journal of Current Research and Academic Review

ISSN: 2347-3215 Volume 3 Number 11 (November-2015) pp. 117-138 www.ijcrar.com



# Molecular Structure, Vibrational Spectra, UV-Visible and NMR Spectral Analysis on Ranitidine Hydrochloride using AB Initio and DFT Methods

P. Ramesh<sup>1\*</sup>, S. Gunasekaran<sup>1</sup> and G. R. Ramkumar<sup>2</sup>

<sup>1</sup>St. Peter's Institute of Higher Education and Research, St Peter's University, Avadi, Chennai-600 054, India <sup>2</sup>C.Kandaswamy College for men, Chennai-600 014, India \**Corresponding author* 

| KEYWORDS                                                             | A B S T R A C T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ranitidine<br>Hydrochloride,<br>FT-IR,<br>FT-Raman,<br>DFT,<br>B3LYP | A systematic approach has been adopted for structural analysis of Ranitidine<br>Hydrochloride by using FTIR, FT Raman and UV-Vis and NMR<br>spectroscopic techniques. The vibrational analysis are aided by electronic<br>structure calculations HF method and density functional methods (B3LYP)<br>performed with 6-31G(d,p) basis set, with the observed FTIR and FT Raman<br>data, complete vibrational band assignments and analysis of the fundamental<br>modes of the compound are carried out. The UV absorption spectra of the<br>title compound dissolved in methanol. Natural Bond Orbital analysis has been<br>carried out to explain the charge transfer (or) delocalization of change due to<br>the intra molecular interactions. The first order Hyperpolarizability ( $\beta_0$ ) of<br>this novel molecular system and related properties ( $\beta$ , $\alpha_o$ , $\Delta x$ ) of Ranitidine<br>hydrochloride are calculated using HF and DFT(B3LYP/61-31G(d,p))<br>methods. In addition the molecular electrostatic potential (MEP) have been<br>investigated using theoretical calculations, the calculated HOMO, LUMO<br>energies and $\Box_{max}$ were determined by time- dependent DFT (TD DFT)<br>method. <sup>1</sup> H and <sup>13</sup> C NMR theoretical shifts of the molecule were calculated.<br>The thermodynamic functions of the title molecule are also performed using<br>DFT method. Thermodynamics properties and atomic charges were<br>calculated using both Hartee Fock and density functional method using above<br>the basis set and compared. |

# Introduction

Ranitidine hydrochloride is in a group of drugs called histamine-2 blockers. Ranitidine works by reducing the amount of acid our stomach producers. Ranitidine hydrochloride Chemically N[2-[[[-

(dimethylamino) methyl]-2furanyl] metgyl] thiyo]ethyl]-N'-methyl-2-nitro-1,1-,HCl (Ranitidine hydrochloride) is H<sub>2</sub> receptor antagonist indicated for duodenal ulcer (Keith G.T,2000). It is used to treat and present ulcers in the stomach and intestine. It is also treats conditions in which the stomach too much acid such as Zollinger Ellison Syndrome, gastro esophageal, reflex disease and erosive esophagitis [International Journal of Pharm Tech Research, 2010; Martindale, 1973).

Ranitidine is mainly used to treatment of Peptic Ulcers Diseases (or) PUD is an ulcer is defined as the mucosal erosion equal to (or) greater than 0.5cm of an area of the gastrointestinal tract exposed to the acid and pepsin secretion. The recommended adult oral dosage of ranitidine is 150 mg twice daily or 300 mg once daily. The effective treatment of erosive esophagitis requires administration of 150 mg of ranitidine 4 times a day. A conventional dose of 150 mg can inhabit gastric acid secretion up to 5 hours but not up to 10 hours. An alternative dose of 300 mg leads to plasma fluctuations; thus a sustained release dosage form of Ranitidine hydrochloride is desirable (Dave, B.S, 2004). Hence the present investigation was undertaken to study the vibrational spectra of this molecule completely and to identify the various normal modes with greater wave number accuracy. The band assignments have been made by assuming  $c_1$ point group symmetry. DFT calculations have been performed to support our wave number assignments and HOMO - LUMO values are calculated.

# Experimental

The compound under the investigation hvdrochloride Ranitidine namelv C<sub>13</sub>H<sub>22</sub>N<sub>4</sub>O<sub>3</sub>S.HCl monoclinic. is Α projection of N[2-[[[5-(dimethylamino) methyl]-2furanyl] methyl] thiyo]ethyl]-N'methyl-2-nitro-1,1-, HCl (Ranitidine hydrochloride) is shown in the Fig.1 was procured from the reputed pharmaceutical

company Chennai, Tamil Nadu, INDIA and which was used without further purification. The FTIR spectrum of the compound was recorded in the 4000-400cm<sup>-1</sup> region in evacuation mode on Bruker IFS 66v model spectrometer using KBr pellet technique solid phase 4.0 cm<sup>-1</sup> resolution. The FT-Raman accessory in the region 4000-500cm using a Nd:YAG laser operating at 100mw power. The UV-Vis spectrum of Ranitidine hydrochloride was recorded in the region 200-600nm. The spectral measurements were carried out at the Indian Institute of Technology (IIT) Madras (Tamil Nadu) India. <sup>1</sup>H and <sup>13</sup>C NMR spectra have been recorded using BRUKER AVANCE III 500 MHZ NMR at SAIF, IIT, and Madras, India.

# **Computational Method**

In the present work, quantum chemical methods like Hartee Fock (HF) and Density Functional B3LYP method with the 6-31G(d,p) basis set are employed to study the complete vibrational spectra of the title compound and to identify the various normal modes with greater accuracy. The present investigation was under taken to study the vibrational spectra of this molecule completely. These calculations have been performed to support our wave number assignments.

The calculations are performed by Gaussian 09W program package on the personal computer. optimized molecular The structure, vibrational frequencies, Thermodynamic properties. hyperpolarizability, NBO analysis, UV-Vis and NMR spectra of the entitled compound were performed using the Gaussian 09W package program which is the modern computational chemistry software package with gauss view molecular visualization program on the pc at B3LYP/6-31G(d,p) method.

#### **Results and Discussion**

## **Molecular Geometry**

The molecules Ranitidine hydrochloride has 45 atoms with 129 normal modes of vibrations. It belongs to  $C_1$  point group symmetry. Fig. 1 shows the optimized geometry of the title compound and Table 1. Presents the optimized values obtained for band length and bond angle. The various bond length and bond angle are found to be almost same at B3LYP/31-G(d,p) and HF methods. The bond length between  $C_1$ - $C_2$  in B3LYP and HF methods are found to be 1.3901 and 1.3713 respectively which are in good agreement with the experimental value.

The bond length between  $C_{10}$ - $H_{30}$  in B3LYP and HF methods are found to be 1.0942 and 1.0839 respectively which are in good agreement with the experimental value 1.09. The bond lengths between  $O_{13}$ - $C_{14}$  and  $C_{18}$ -N<sub>19</sub> in B3LYP and HF methods are found to be 1.3794 and 1.3564, 1.45 and 1.44 respectively which are in good agreement with the experimental 1.37 and 1.46. The bond angle between  $C_1$ - $C_2$ - $N_5$  in B3LYP and HF methods are 124.43°, 124.82° are good agreement with the experimental value 124.43°. The bond angle  $N_3$ -C<sub>9</sub>-H<sub>29</sub> in B3LYP and HF methods are 109.44° and 109.71° which are in good agreement with the experimental value 109.44°. The bond angle C<sub>10</sub>-C<sub>9</sub>-H<sub>29</sub> in B3LYP and HF method are 110.05°, 109.82° which are in good agreement with the experimental value 109.44°. The bond angle  $C_{14}$ - $C_{12}$ - $H_{33}$  in B3LYP and HF methods are 110.71° and 109.95° which are in good in agreement with the experimental value 109.52°. The calculated geometrical parameters of Ranitidine hydrochloride. The optimized bond length are (longer than or smaller than) the experimental values as the theoretical calculations result from isolated molecules

119

in gaseous state where as the experimental results were from molecule in solid state (Gunasekaran et al, 2003). Bond angle and dihedral angles were referred from (C.N. Rao, 1964, C.N.Rao,1963).

## Vibrational Band Assignment

The observed and calculated frequencies using RHF/cc-PVDZ., B3LYP/6-31G(d,p) methods and their IR intensities and assignments are listed in Table 2. Experimental and Theoretical FTIR spectra of Ranitidine hydrochloride are shown in Fig. 2. Experimental and theoretical FT-Raman spectra of Ranitidine hydrochloride are presented in Fig. 3. The description of the various band assignments are as follows.

## N-H Vibration

Primary aliphatic amines absorb in the region 3450-3250cm<sup>-1</sup> in solids or liquids and they are broad and of medium intensity. In solid and liquid phase, a band of medium intensity is observed at 3400-3300cm<sup>-1</sup> for secondary aromatic amines. In general the vibrational bands due to the N-H stretching are sharp and weak than those of O-H stretching vibrations by virtue of which they can easily identified (R.Huey, 2007). Hetero aromatic containing in the N-H group has a stretching absorption (Sagdine, 2007) in the region 3500-3220cm<sup>-1</sup>. The bands of moderate intensity found in the region 1430-1330cm<sup>-1</sup> may be due to interaction between C-N stretching and N-H bending group (Varsanyi, 1973). The N-H stretching vibration give rise to a weak band at 3500-3300 cm<sup>-1</sup>. The band appear at 3414 cm<sup>-1</sup> in spectrum of 2-amino-4.6the FTIR pyrimidine molecule dimethoxy was assigned to NH<sub>2</sub> stretching vibration (Wilson B.E, 1995). Bayari et al [12] assigned the band at 3364cm<sup>-1</sup>, which corresponds stretching to N-H in methylphenidate. Based on this the

symmetric and asymmetric N-H stretching vibrations of the molecule Ranitidine hydrochloride are assigned to 3570cm<sup>-1</sup> FT-Raman are respectively.

## **C-H Vibration**

The hetero aromatic structure shows the presence of C-H stretching vibrations in the region 3250-3000cm<sup>-1</sup> which is characteristic region for the ready identification of C-H stretching vibrations (D.Becke, 1993). Hetero cyclic compound C-H vibration absorption bands are usually weak, in many is too weak for detection. In this region, the bands are not affected, appreciably by the nature of substituents. In the Present work, the FTIR and FT Raman bands observed at 3191cm<sup>-1</sup> and 3188cm<sup>-1</sup> have been assigned to C-H stretching vibration.

The B3LYP level at 6-31G(d,p) gives the frequency values 3148cm<sup>-1</sup> and 3200cm<sup>-1</sup> in HF as shown in Table 2. In general the aromatic C-H stretching vibrations calculated theoretically in good are agreement with the experimentally reported values (Y.Uesugi, 1997) for trisubstituted benzene in the region 3250-3000cm<sup>-1</sup>. The title molecule Ranitidine Hydrochloride has out- of- plane and in-plane aromatic C-H bending vibrations. The out of plane bending mode of C-H is found well with experimentally predicted in the region 900-800 cm<sup>-1</sup> at B3LYP/6-31G(d,p). The observed FTIR value of 879-859cm<sup>-1</sup> is in agreement with 878 and 857cm<sup>-1</sup> of B3LYP/6-31G(d,p) results. The C-H in plane bending vibrations assigned in the region 980-1260 cm<sup>-1</sup> even though found to be contaminated by C-CH<sub>3</sub> stretch are found in literatures. (S.Gunasekaran, 1993), while the experimentally observed values are at 1074 and 1263cm<sup>-1</sup>.

### **C-N Vibration**

The identification of C-N stretching frequency is a very difficult task since, the mixing of bands are possible in this region (S.Gunasekaran, 2005). The C-N stretching is assigned at 1319cm<sup>-1</sup> in 2,6band dibromo-4-nitroanilineby Krishnakumar et al (2005) and Xavier Jesu Raja et al (1994) have identified the FT-IR band at due to C-N 1342cm<sup>-1</sup> in Theophylline. Gunasekaran et al (2008) have observed C-N stretching band at 1312cm<sup>-1</sup> in benzocaine. Seshdri et al (2009) have observed the C-N stretching band at 1305cm<sup>-1</sup> in FTIR and 1307cm<sup>-1</sup> in FT Raman spectra of 7-chloro-3-methyl-2H-1. 2. 4-benzothiadiazine 1.1-dioxide. (Silverstein et al,1981) assigned C-N stretching vibrations in the region 1342-1266cm<sup>-1</sup> for aromatic amines. Hence in the present investigation, the FTIR bands observed at 1304, 1263cm<sup>-1</sup> and the bands 1228  $\text{cm}^{-1}$  in the FT at 1263, 1248, spectrum Ranitidine Raman of hydrochloride are assigned to the C-N mode of vibrations. The stretching Calculated value  $1263, 1231, 1308 \text{ cm}^{-1}$  In B3LYP and 1280, 1246, 1219cm<sup>-1</sup> in HF method are excellent agreement with the experimental observation of both in FTIR and FT Raman spectra.

## C=C and C-C Vibration

The C=C aromatic stretching vibrations gives rise to characteristic bands in both the observed IR and Raman spectra, covering the spectral range from 1650-1430 cm<sup>-1</sup>(S. Gunasekaran2003). In our study the C=C stretching vibrations of the title compound observed at 1618 and 1590 cm<sup>-1</sup> in FT-IR and 1600 and 1587 cm<sup>-1</sup> in FT-Raman are assigned to C=C stretching vibrations respectively. The calculated values are 1600, 1584 cm<sup>-1</sup> and 1606, 1584 cm<sup>-1</sup> in B3LYP method with 6-31G (d,p) and HF method

respectively. The ring 1590-1430cm<sup>-1</sup> (C.S. Hsu,1974) The present investigation C-C stretching vibrations have been observed at 1417cm<sup>-1</sup> in FT-IR and 1450, 1437, 1408cm<sup>-</sup> <sup>1</sup> in FT-Raman is due to C-C stretching vibrations. The calculated wave numbers are 1454 and 1440, 1400cm<sup>-1</sup> in B3LYP method with 6-31G(d,p) and 1447, 1442cm<sup>-1</sup> in HF method respectively. The C=C and C-C stretching vibrations predicted by B3LYP and HF methods values are in good agreement with the experimental value are presented in Table 2. The bands are observed 1045, 1021cm<sup>-1</sup> in FT-IR and 1023, 1007, 802cm<sup>-1</sup> in FT-Raman have been assigned to C-C in plane bending vibrations.

# **C-O Vibrations**

Generally the C-O stretching vibrations region1320-1210cm<sup>-1</sup> in the occur (Barbara.H 2010). In the present study, the medium bands observed at 1304 and 1263cm-1in FT-IR and the weak band observed at 1306 and 1263, 1248cm<sup>-1</sup> in FT-Raman are assigned to C-O stretching vibration. The calculated bands observed at 1308, 1263 and 1256cm<sup>-1</sup> in B3LYP level with 6-31G(d,p) and 1311, 1280, 1246cm<sup>-1</sup> in HF method respectively are in excellent agreement with experimental frequency. From the data available in literature, it is found that the intensities of the carbonyl bands of aldehyde vary with structural features. In alcoholic solution, there is a distinct fall in the intensity of aldehyde due to carbonyl absorption. Ashdown and Keltz (1948) have reported number of such cases and the range of frequencies 1020-1110cm<sup>-1</sup> to be associated with the C-O linkage. The experimental frequencies at 1164, 1133, 1133, 1122, 1074, 1021 and 925 cm-1 in FTIR and 1164, 1135, 1102, 1073, 1046, 1023, 1007 and 955 cm<sup>-1</sup> in FT-Raman spectrum of Ranitidine hydrochloride are assigned to C-O stretching vibrations. This is in excellent agreement with B3LYP/6-31G(d,p) and HF method.

# **C-S Vibrations**

In general, the assignment of the band due to C-S stretching vibrations in different compounds is difficult. Both aliphatic and aromatic sulphides have weak-to-medium bands due to C-S stretching vibration in the region 780-510cm<sup>-1</sup> (Venkataramana Rao, 2002 Krishnakumar V, 1998). Double band conjugation with C-S band like vinyl or phenyl lowers the C-S stretching vibration and increase the intensity. In view of this the medium intense bands present at 761, 698, 660 641cm<sup>-1</sup> in FT-IR and 756, 720, 661cm<sup>-1</sup> in FT-Raman spectrum of ranitidine hydrochloride are assigned due to C-S stretching modes of vibration.

# NO<sub>2</sub> (Nitro group Vibration)

The  $NO_2$  stretching vibrations are very useful group vibration because of their spectral position and strong intensity. The NO<sub>2</sub> asymmetrical stretching vibrations in nitro alkenes occur in the range 1560-1530cm<sup>-1</sup> and the symmetric vibration lie in the range 1390-1370cm<sup>-1</sup>, the asymmetrical stretching being their stronger than the symmetrical stretching. In aromatic compounds the NO<sub>2</sub> stretching bands shift down to slightly lower than wave numbers in the range 1540-1500 cm<sup>-1</sup> and 1370-1330cm<sup>-1</sup> (L.E Sutton, 1958). Aromatic nitro compounds have strong vibrations of the  $NO_2$  groups at 1570-1485cm<sup>-1</sup> and 1370-1320cm<sup>-1</sup> due to asymmetric stretching vibrations respectively (S. Muthu,2012 and Pradeepa,2014). Jone In Ranitidine hydrochloride the FTIR spectrum1379cm<sup>-1</sup> and FT Raman 1554cm<sup>-1</sup>,1533cm<sup>-1</sup> which are due to NO<sub>2</sub> stretching vibration.

#### **UV-Vis Spectral Analysis**

UV-Vis electronic The spectrum of Compund in Methanol solvent was recorded with 200-600nm range is shown in Fig 4. To support experimental observations, the theoritical electronic excitation energies, absorption, obsorption weavelength and oscillator strength were calculated by TD-DFT with GAUSSIAN 09W program. All Calculations were performed asssuming the title compound was in the Liquid phase and Methonal solvent. The experimental and calculated result of UV-Vis spectral data compared Table were in 3. The experimentally measure UV-Vis data 325nm, 228nm and 198nm showed good agreement with theoritically computed data 287.31nm. and 259.48nm 257.51nm respectively which was obtained by TD-B3LYP/631-G(d,p) method. DFT The analysis of the wave function indicates that the electron absorption corresonds to the transition from the ground to the first excitated state. It is mainly described by an electron excitation from highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbitial (LUMO). The HOMO energy characterizes the abiity of electron donating, LUMO characterizes the ability of electron accepting and the gap between HOMO and LUMO characterizes the molecular chemical stability (K. Sarojini,2013). The HOMO is located over the entire Carbon chain and LUMO transudation implies and electron density transfer to the electronegative hydroxyl group from carbon chain. The HOMO and LUMO surfaces are sketched in Fig.5 According to the B3LYP calculation the energy gap ( $\Delta E$ ) between HOMO (-6.01240302eV) and LUMO (-.014176332) of the molecules is about 4.998226688 eV. This energy gap between HOMO and LUMO explains the ultimate charge transfer interactions within the molecule.

#### HUMO and LUMO Analysis

organic molecule that contain Many conjugated  $\pi$  electrons are characterized by hyperpolarizabilities have been analyzed by means of vibrational spectroscopy (R. S, Mulliken 1958). In most of the cases, even in the absence of inversion symmetry, the strongest bands in the Raman spectrum are weak in the IR spectrum vice versa. But the intra molecular charge transfer from the donor to acceptor group through a singledouble bond conjugated path can induce large vibrations of both the molecular dipole moment and the molecular polarizibility, making IR and Raman activity strong at the same time. It is also observed in Ranitidine hydrochloride. The analysis of the wave indicates that function the electron absorption corresponds to the transition from the ground to the first excited state and mainly described by one-electron is excitation from the highest occupied Molecular Orbital (HOMO) to the Lowest Unoccupied Molecular Orbital (LUMO). The atomic orbital compositions of the Frontier Molecular Orbital are sketched in fig 5. The HOMO and LUMO energy gap of Ranitidine hydrochloride has been calculated by using DFT/B3LYP/6-31G(d,p) basis sets Table 3, reveals that the energy gap reflects the chemical activity of the molecule. LUMO as an electron acceptor represents the ability to donate and electron. The HOMO and LUMO energy gap ( $\Delta E$ ) (transition from HOMO to LUMO) of the molecule is explains the fact that eventual transfer interaction is taking place with the molecule.

HOMO energy (B3LYP/6-31G(d,p)) = -6.01240302 LUMO energy (B3LYP/6-31G(d,p)) = -1.014176332 HOMO-LUMO energy (B3LYP/6-31G(d,p)) = 4.998226688

#### **Mulliken's Population Analysis**

The total atomic charges of Ranitidine hydrochloride obtained by Mullikan's population analysis by HF and B3LYP method, with 6-3G(d,p) basis set were listed Table 4. The atomic charges affect in dipole moment, polarizability, electronic structure and more a lot of properties of molecular systems. The charge distribution of the title compound shows that the Carbon atoms ( $C_1$ ,  $C_{14}$ , and  $C_{17}$ ) attached with Nitrogen, Carbon and Oxygen is positive [0.335504, 0.324143] remain Carbon atoms are negatively charged. H<sub>24</sub> has the maximum positive charge of 0.30893e and H<sub>23</sub> has the next maximum charge of 0.272443e Hence the Nitrogen atoms attract the Carbon  $N_3$  and the hydrogen atom  $H_{23}$ . N<sub>3</sub> atom has highly negative charge of -0.553581 and H<sub>23</sub> attached to it has positive charge 0.272443 in B3LYP method. The other Carbon atoms  $C_2$ ,  $C_8$ ,  $C_9$ ,  $C_{10}$ ,  $C_{12}$ ,  $C_{15}$ ,  $C_{16}$ ,  $C_{20}$ ,  $C_{21}$  and  $Cl_{44}$  have negative atomic charges. All the hydrogen atoms exhibit positive charge Both HF and B3LYP method. From the result it is clear that the substitution of aromatic ring leads to a redistribution of electron density. The charge distribution on the molecule has an important influence on the vibrational spectra (Y. Ataly,2008). The corresponding plot of Mullikan's charges obtained by B3LYP/6-3G(d,p) are shown in Fig 6. respectively.

### First Order Hyperpolarizability

The polarizability  $\alpha$ , the Hyperpolarizability  $\beta$  and electric dipole moment  $\mu$  of the Ranitidine hydrochloride are calculated by finite field method, using B3LYP/6-31G (d,p) basis set available in DFT methods. To

calculate all the electric dipole moments and the first Hyperpolarizability for the isolated molecule the origin of the Cartesian Coordinate system was chosen at own canter of mass of Ranitidine hydrochloride. The first Hyperpolarizability  $(\beta_0)$  of this novel molecular system and related properties ( $\beta$ ,  $\alpha_0$  and  $\Delta \alpha$ ) of Ranitidine hydrochloride are calculated and it is based on the finite field approach. In the presence of an applied electronic field, the energy of a system is a function of the electric field. First hyper polarizability is a third rank tensor that can be described by 3x3x3 matrixes is a tetrahedral. The 27 components of the 3D matrix can be reduced to 10 components due to the Kelinman Symmetry (T. Vijakumar, I.H. Joe, 2008). The components of  $\beta$  are defined as the coefficients in the Taylor series expansion of the energy in the external electric field. When the external electric field is weak and homogeneous this expansion becomes:

$$E{=}~E0{\text{-}}\mu_{\alpha}F_{\alpha}{\text{-}}1/2_{\alpha\beta}F_{\alpha}F_{\beta}{\text{+}}1/6\beta_{\alpha\beta\gamma}F_{\alpha}F_{\beta}F_{\gamma}$$

 $E^0$  is the energy of unperturbed molecules F $\alpha$  is the field at the origin  $\mu_x$ ,  $\alpha_{\alpha\beta}$  and  $\beta\alpha\beta\gamma$ is the components of dipole moment, polarizability and the first Hyperpolarizability respectively. A the anisotropy of the polarizability  $\Delta\alpha$  and the mean first Hyperpolarizability  $\beta$ o using the x,y,z components they are defined as

$$\mu = (\mu x^{2} + \mu y^{2} + \mu z^{2})^{1/2}$$

$$\alpha_{o} = \alpha_{xx} + \alpha_{yy} + \alpha_{zz}/3$$

$$\Delta \alpha = 2^{-1/2} [(\alpha_{xx} - \alpha_{yy})^{2} + (\alpha_{yy} - \alpha_{zz})^{2} + (\alpha_{zz} - \alpha_{xx})^{2} + 6\alpha^{2} \alpha_{xz}]^{1/2}$$

$$\beta_{o} = (\beta^{2}x + \beta^{2}y + \beta^{2}z)^{1/2} \text{ and } \beta_{x} = \beta_{xxx} + \beta_{xyy} + \beta_{xzz}$$

$$\beta_{y} = \beta_{yyy} + \beta_{xxy} + \beta_{yzz}$$

 $\beta_z\!=\beta_{zzz}\!\!+\!\beta_{xxz}\!\!+\!\beta_{yyz}$ 

since the values of the polarizabilities  $(\alpha)$ and Hyperpolarizability  $(\beta)$  are reported in atomic units (a.u.), the calculated values have been converted into electrostatic units (esu) ( $\alpha$ : 1a.u. = 0.1482 X10<sup>-24</sup>esu: 1 a.u. = 8.639X10<sup>-33</sup>esu). The first orders Hyperpolarizability  $(\beta)$  of the molecule along with related properties were calculated and **B3LYPmethods** using RHF are presented in Table 5. Urea is one of the molecules which has good non-linear comparative studies, ( $\mu = 1.3732$  debye and  $\beta = 0.3728 \times 10^{-30}$  esu). In RHF method, dipole moment  $(\mu)$  is nearly 4.0 times greater than urea and hyperpolarizability is 15 times greater than urea. In B3LYP method, the dipole moment is 3.5 times greater than urea and hyperpolarizability is 11 times greater than urea. Hence the title compound has good non-linear property.

#### **NBO** Analysis

NBO ( Natural Bond Orbital ) analysis provide an efficient method for studying intra and inter molecular bonding and interaction among bonds, and also provides a convenient basis for investigation charge transfer or conjugative interactions in molecular system. (Kosar, 2011) Another useful aspect of NBO method is that it gives information about interactions in both filled and virtual orbital spaces that could enhance the analysis of intra and intermolecular interactions. The second order Fock matrix was carried out to evaluate the donor acceptor interactions in the NBO analysis (D.A. Kelinman, 1962). For each donor NBO (i) and acceptor (j), the stabilization energy associated with  $i \rightarrow j$  delocalization can be estimated as,

 $\mathbf{E}(2) = \Delta \mathbf{E}\mathbf{i}\mathbf{j} = \mathbf{q}\mathbf{i} \mathbf{F}(\mathbf{i},\mathbf{j})2/\Box \mathbf{j} \cdot \Box \mathbf{i}$ 

Where  $q_i$  is the donor orbital occupancy,  $\Box i$ , □j are diagonal elements (orbital energies) and F<sub>ii</sub> is the off-diagonal NBO Fock matrix element. In Table 6. The perturbation significant donor-acceptor energies of interactions are presented. The larger the E(2) value, the intensive is the interaction between electron donors and electron acceptors. In Ranitidine hydrochloride, the interactions between the first lone pair LP(3)of  $O_7$  with  $\sigma^*$  (  $N_5$ - $O_6$ ) have the highest E(2) value around 136.79 kcal/mol. The other significant interactions giving stronger stabilization energy value of 58.34kcal/mol to the structure are the interactions between anti bonding of  $C_1$ - $C_2$  between the same lone pair LP(1) of nitrogen. The intermolecular hyper conjugative interaction of  $\sigma$  (C<sub>1</sub>-C<sub>2</sub>)  $\sigma^*$  $(N_5 - O_6)$ leading to strong and stabilization of 30.57kcal/mol. The intra molecular hyper conjugative interaction of  $\sigma$  $(C_{14}-C_{15})$  to  $\sigma^*$   $(C_{16}-C_{17})$  and  $\sigma$   $(C_{16}-C_{17})$  to  $\sigma^{*}(C_{14}-C_{15})$  leads to 12.95 and 14.63 kcal/mol respectively. These interactions are observed as increase in electron density in anti bonding orbital that weakens the responsible for biological properties. Hence Ranitidine hydrochloride structure stabilized by these orbital's interactions. In ranitidine hydrochloride oxygen larger percentage of NBO and gives the larger polarization coefficient because it has the higher electro negativity. The calculated values of E(2) are given in Table 6.

#### **Thermodynamic Properties**

The Variation in Zero-point Vibrational Energies (ZPVEs) seems to be important. The value of some thermodynamic parameters such as Zero-point vibrational energy, thermal energy, specific heat capacity, rotational constant, entropy of Ranitidine hydrochloride but HF and DFT/B3IYP with 6-31G(d,p) basis sets are listed in the Table 7. The statistical thermo chemical analysis of Ranitidine hydrochloride was performed considering the molecule to be at room temperature 298K and one atmospheric pressure.

All the thermodynamic data supply helpful information for further study of the title molecule. The can be used to compute the other thermo-dynamic energies according to relationships of thermodynamic functions estimate directions and of chemical reactions according to the second law of dynamical field thermo (S. Subashchandrabose, 2010). The ZPVEs, energy is lower in the B3LYP method at 6-31G (d,p) basis set than by HF method. The biggest value of ZPVEs of Ranitidine hydrochloride is 247.0806 KJ mol<sup>-1</sup> obtained at HF method. However, specific heat capacity and entropy were calculated the smallest values for HF but the highest values obtained B3LYP method. were The minimum value of thermal energy are calculated in246.640 at B3LYP/6-31G(d,p) whereas the maximum one was calculated 263.023 at HF Method in Ranitidine hydrochloride molecule. The thermodynamic functions such as heat capacity at constant pressure (Cp), entropy (S) and enthalpy change (ddH) for the title were evaluated compound from the theoretical harmonic frequencies obtained from B3LYP method in the temperature range 100-1000 K and are listed in Table 8.

From this table it is evident that the properties increase with the increases in temperature due to the fact that the vibrational intensities of molecules increase with temperature. The correlation between these thermodynamic properties and temperatures are fitted bv quadratic formulae as follows and corresponding fitting factor  $(\mathbb{R}^2)$  for these thermodynamic properties were found to 0.99958, 0.99941 and 0.99954. The temperature dependent correlation graphs are shown in Fig 7.

 $C_{pm}^{0} = 355.22896 + 1.28893T - 5.1641X10^{-4} T^{2} (R^{2} = 0.99958)$ 

 $S_{m}^{0} = 71.25293 + 1.66492T - 4.54469X10^{-4}$  $T^{2}$  (R<sup>2</sup> =0.99941)

 $\Delta H^{0}_{m} = -15.90805 + 0.20217T - 3.61844X10^{-4} T^{2} (R^{2} = 0.99954)$ 

# NMR Spectral Analysis

In this study, <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts of Ranitidine hydrochloride were calculated and depicted in Table 9. These calculations obtained at B3LYP/6-31G(d,p) and HF methods for the optimized geometry were observed to be in good agreement with experimental results. The <sup>1</sup>H isotropic chemical shift values were obtained from 2.034 to 5.183ppm while these values were calculated from 2.454 to 10.414ppm at B3LYP/6-31G(d,p) and 2.039 to 10.334 ppm in HF method, as seen from table, all computations are in good agreement with experimental data. The Proton H(32), observed to be about 4.842ppm was found to be 4.780ppm at B3LYP/6-31G(d,p) and 4.224ppm at HF method, calculation level of theory. In addition <sup>13</sup>C isotropic chemical shifts with regard to TMS calculated at the same basis set are given in the same Table 9. <sup>13</sup>C chemical shift values were obtained from 38.512 to 158.524ppm where as these values were experimentally observed from 39.996 to 155.049 ppm. The chemical shifts of  $C_{14}$  and  $C_{17}$  connected with oxygen  $O_{13}$ was observed to be 151.054, 159.164ppm and 146.163. 155.662ppm bv the B3LYP/6-31G (d,p) and HF method.

| Parameters                          |                  | Ranitidine hydrochloride |              |
|-------------------------------------|------------------|--------------------------|--------------|
| Bond Length (A)                     | B3LYP/6-31G(d,p) | HF/6-31G(d,p)            | Experimental |
| $C_1$ - $C_2$                       | 1.3901           | 1.3713                   | 1.39         |
| $C_1$ - $N_4$                       | 1.3888           | 1.3802                   | 1.37         |
| $C_1-N_4$                           | 1.3500           | 1.3392                   | 1.37         |
| C <sub>2</sub> -N <sub>5</sub>      | 1.3986           | 1.3987                   | 1.39         |
| C <sub>2</sub> -H <sub>22</sub>     | 1.0786           | 1.0665                   | 1.08         |
| N <sub>3</sub> -C <sub>9</sub>      | 1.4701           | 1.4601                   | 1.46         |
| N <sub>3</sub> -H <sub>23</sub>     | 1.0129           | 0.9964                   | 1.01         |
| $N_4$ - $C_8$                       | 1.4555           | 1.4528                   | 1.46         |
| N <sub>4</sub> -H <sub>24</sub>     | 1.023            | 0.9962                   | -            |
| N <sub>5</sub> -O <sub>6</sub>      | 1.2389           | 1.1985                   | 1.23         |
| N5-O7                               | 1.2633           | 1.2159                   | 1.23         |
| O <sub>7</sub> -H <sub>24</sub>     | 1.8145           | 1.9438                   | -            |
| $C_8-H_{25}$                        | 1.0931           | 1.0827                   | 1.09         |
| $C_8-H_{26}$                        | 1.0928           | 1.0803                   | 1.09         |
| $C_{8}-H_{27}$                      | 1.0967           | 1.0846                   | 1.09         |
| $C_0 - C_{10}$                      | 1.5346           | 1.5299                   | 1.53         |
| $C_{0}$ -H <sub>28</sub>            | 1.0937           | 1.0828                   | 1.09         |
| $C_0-H_{20}$                        | 1.0911           | 1.0791                   | 1.09         |
| $C_{10}-S_{11}$                     | 1.8384           | 1.8169                   | 1.81         |
| $C_{10}$ - $H_{30}$                 | 1.0942           | 1.0839                   | 1.09         |
| $C_{10} - H_{31}$                   | 1.0954           | 1.0849                   | 1.09         |
| $S_{11}-C_{12}$                     | 1.8614           | 1.8281                   | 1.81         |
| $C_{12}$ - $C_{14}$                 | 1.4813           | 1.4870                   | 1.48         |
| $C_{12} - H_{32}$                   | 1.0919           | 1.0814                   | 1.09         |
| $C_{12}-H_{33}$                     | 1.0948           | 1.0840                   | 1.09         |
| $O_{12} = -35$                      | -                | 3.2661                   | -            |
| $O_{12} = -45$<br>$O_{13} = C_{14}$ | 1.3794           | 1.3564                   | 1.37         |
| $O_{13}-C_{17}$                     | 1.3755           | 1.5410                   | 1.37         |
| $O_{12}-H_{45}$                     | 1.9893           | 2.2164                   | -            |
| $C_{12} = -45$<br>$C_{14} = C_{15}$ | 1.3621           | 1.3379                   | 1.39         |
| $C_{15}-C_{16}$                     | 1.4337           | 1.4416                   | 1.39         |
| $C_{15} - H_{34}$                   | 1.0807           | 1.0708                   | 1.09         |
| $C_{16}-C_{17}$                     | 1.3611           | 1.3385                   | 1.36         |
| $C_{16}-H_{35}$                     | 1.0794           | 1.0690                   | 1.09         |
| $C_{10} - C_{13}$                   | 1.4971           | 1.4981                   | 1.49         |
| $C_{18}$ -N <sub>10</sub>           | 1.4597           | 1.4471                   | 1.46         |
| $C_{18} - H_{26}$                   | 1.0982           | 1.0860                   | 1.09         |
| $C_{18} - H_{37}$                   | 1.1079           | 1.0937                   | 1.09         |
| $N_{10}-C_{21}$                     | 1.4600           | 1.4500                   | 1.46         |
| $C_{20}-H_{28}$                     | 1.4583           | 1.4484                   | 1.46         |
| $C_{20} - H_{30}$                   | 1.0941           | 1.0840                   | 1.09         |
| $C_{20} = H_{40}$                   | 1.1065           | 1.0941                   | 1.09         |
| $C_{20} = H_{40}$                   | 1.0927           | 1.0821                   | 1.09         |
| $C_{21} - H_{42}$                   | 1.0941           | 1.0838                   | 1.09         |
| $C_{21} H_{42}$                     | 1 1065           | 1 0941                   | 1 09         |
| $H_{21}-H_{42}$                     | 1.0944           | 1.0839                   | 1.09         |
| $H_{35}-H_{45}$                     | -                | 2.9278                   | -            |
| Cl44-H45                            | 1.2991           | 1.2708                   | -            |
| Bond angle(degree)                  |                  |                          |              |
| $C_2$ - $C_1$ - $N_2$               | 118.4154         | 117.4768                 | 119.11       |
|                                     | -                |                          |              |

# Table.1 Optimized Geometrical Parameters (bond lengths, bond angles) of the Ranitidine Hydrochloride

| $C_2-C_1-N_4$                                                            | 123.0839 | 125.1815 | 119.11 |
|--------------------------------------------------------------------------|----------|----------|--------|
| $N_3$ - $C_1$ - $N_4$                                                    | 118.4924 | 117.3416 | 115.90 |
| $C_1 - C_2 - N_5$                                                        | 124.4323 | 124.8236 | 124.43 |
| $C_1$ - $C_2$ - $H_{22}$                                                 | 121.9211 | 122.0252 | -      |
| N <sub>5</sub> -C <sub>2</sub> -H <sub>22</sub>                          | 113 6184 | 113 1335 | -      |
| $C_1 - N_2 - C_0$                                                        | 121 5155 | 120,9690 | -      |
| Ci-No-Haa                                                                | 111 5491 | 111 8755 | 110.00 |
| CarNarHag                                                                | 112 1218 | 112 3712 | 110.00 |
| $C_1 N_2 C_2$                                                            | 125 1630 | 125.0850 | 125.03 |
| $C_1 = N_4 = C_8$                                                        | 110 4457 | 112 8836 | 110.00 |
| $C_1 H_4 H_{24}$                                                         | 118 7809 | 116 6753 | 110.00 |
| $C_8 - N_4 - M_{24}$                                                     | 117 8601 | 117 1744 | 117.17 |
| $C_2 - N_5 - O_6$                                                        | 120.0803 | 120 1574 | 117.17 |
| $O_2 N_2 O_2$                                                            | 122.0605 | 122.1574 | 117.17 |
|                                                                          | 108 7810 | 108 6456 | 100.48 |
| $N_4 - C_8 - \Pi_{25}$                                                   | 110 5/05 | 110 6743 | 109.48 |
| $N_4$ - $C_8$ - $\Pi_{26}$                                               | 110.3493 | 111 7167 | 109.48 |
| $H_4 - C_8 - H_{27}$                                                     | 102.2310 | 108 427  | 109.48 |
| П <sub>25</sub> -С <sub>8</sub> -П <sub>26</sub><br>Н <sub>25</sub> -С Ч | 100.3211 | 100.427  | 102.00 |
| П <sub>25</sub> -С <sub>8</sub> -П <sub>27</sub><br>Н. С. Ц              | 107.0341 | 100.10/1 | 107.00 |
| $H_{26}-C_8-H_{27}$                                                      | 100.7990 | 112 0405 | 109.00 |
| $N_3-C_9-C_{10}$                                                         | 115.0907 | 106.0286 | 120.20 |
| $N_3 - C_9 - \Pi_{28}$                                                   | 107.1340 | 100.7230 | 109.00 |
| $\Gamma_3 - C_9 - \Pi_{29}$                                              | 109.4401 | 109.7174 | 109.44 |
| $C_{10}-C_{9}-H_{28}$                                                    | 109.885  | 109.901  | 109.44 |
| $C_{10}$ - $C_{9}$ - $\Pi_{29}$                                          | 106 0888 | 107.167  | 109.44 |
| $\Gamma_{28}$ -C <sub>9</sub> - $\Gamma_{29}$                            | 100.9888 | 107.107  | 109.52 |
| $C_{9}-C_{10}-S_{11}$                                                    | 110.1587 | 110 0055 | -      |
| $C_{9}-C_{10}-\Pi_{30}$                                                  | 100.1387 | 100.0448 | 109.52 |
| $C_9 - C_{10} - \Pi_{31}$                                                | 109.0975 | 109.9448 | 109.52 |
| $S_{11}-C_{10}-11_{30}$                                                  | 10.2383  | 109.7027 | -      |
| $H_{11} - C_{10} - H_{13}$                                               | 108.0053 | 109.0905 | 109.00 |
| $\Gamma_{30} - C_{10} - \Gamma_{31}$                                     | 00.9055  | 00 0055  | 103.00 |
|                                                                          | 111/601  | 111 0513 |        |
| $S_{11} C_{12} C_{14}$                                                   | 109 5588 | 109 6513 | _      |
| $S_{11} C_{12} H_{32}$                                                   | 107.2345 | 109.0313 |        |
| $S_{11} = C_{12} = H_{33}$                                               | -        | 78 5279  | -      |
| $C_{14}$ - $C_{12}$ - $H_{22}$                                           | 109 3878 | 109 2113 | 109.21 |
| $C_{14} = C_{12} = H_{32}$                                               | 110 7167 | 109.2113 | 109.52 |
| $C_{14} = C_{12} = H_{45}$                                               | -        | 72.5861  | -      |
| $H_{22}-C_{12}-H_{22}$                                                   | 108,4126 | 108.5075 | 108.50 |
| $H_{32}-C_{12}-H_{45}$                                                   | -        | 169.4803 | -      |
| $H_{32}-C_{12}-H_{45}$                                                   | -        | 61.7781  | -      |
| $C_{14}-O_{13}-C_{17}$                                                   | 107.7264 | 107.8006 | -      |
| $C_{14}-O_{13}-H_{45}$                                                   | 122.3262 | 122.3736 | -      |
| $C_{17}-O_{13}-H_{45}$                                                   | 129.884  | 129.6233 | -      |
| $C_{12}-C_{14}-O_{13}$                                                   | 116.9300 | 116.9549 | -      |
| $C_{12}$ - $C_{14}$ - $C_{15}$                                           | 133.9878 | 133.2882 | _      |
| $O_{13}-C_{14}-C_{15}$                                                   | 109.0793 | 109.7559 | 109.00 |
| $C_4 - C_{15} - C_{16}$                                                  | 107.0218 | 106.3712 | -      |
| $C_{14}-C_{15}-H_{34}$                                                   | 125.7696 | 126.2153 | -      |
| $C_{16}-C_{15}-H_{34}$                                                   | 127.2083 | 127.4135 | 127.50 |
| $C_{15}-C_{16}-H_{17}$                                                   | 106.7599 | 106.1059 | -      |
| C <sub>15</sub> -C <sub>16</sub> -H <sub>35</sub>                        | 127.9659 | 127.9851 | 127.50 |
| C <sub>17</sub> -C <sub>16</sub> -H <sub>35</sub>                        | 125.2741 | 125.9085 | 127.50 |
| $O_{13}-C_{17}-C_{16}$                                                   | 109.4125 | 109.9664 | 109.50 |

| $O_{13}$ - $C_{17}$ - $C_{18}$                    | 116.7275 | 116.1595 | 109.50 |
|---------------------------------------------------|----------|----------|--------|
| $C_{16}$ - $C_{17}$ - $C_{18}$                    | 133.8257 | 133.8328 | -      |
| $C_{17}$ - $C_{18}$ - $N_{19}$                    | 111.5908 | 109.4996 | -      |
| C <sub>17</sub> -C <sub>18</sub> -H <sub>36</sub> | 109.1477 | 109.4415 | -      |
| C <sub>17</sub> -C <sub>18</sub> -H <sub>37</sub> | 108.9221 | 109.4618 | -      |
| N <sub>19</sub> -C <sub>18</sub> -H <sub>36</sub> | 107.8622 | 109.4419 | 109.46 |
| N <sub>19</sub> -C <sub>18</sub> -H <sub>37</sub> | 113.0426 | 109.4623 | 109.46 |
| H <sub>36</sub> -C <sub>18</sub> -H <sub>37</sub> | 106.0654 | 109.5204 | 109.00 |
| $C_{18}$ - $N_{19}$ - $C_{20}$                    | 112.1605 | 120.0001 | -      |
| $C_{18}$ - $N_{19}$ - $C_{21}$                    | 111.9604 | 119.9996 | -      |
| $C_{20}$ - $N_{19}$ - $C_{21}$                    | 111.2485 | 120.0003 | -      |
| N <sub>19</sub> -C <sub>20</sub> -H <sub>38</sub> | 109.4921 | 109.4995 | 109.50 |
| N <sub>19</sub> -C <sub>20</sub> -H <sub>39</sub> | 112.8509 | 109.442  | 109.50 |
| N <sub>19</sub> -C <sub>20</sub> -H <sub>40</sub> | 109.9046 | 109.4619 | 109.50 |
| H <sub>38</sub> -C <sub>20</sub> -H <sub>39</sub> | 108.1121 | 109.4421 | 109.44 |
| $H_{38}$ - $C_{20}$ - $H_{40}$                    | 108.1059 | 109.462  | 109.44 |
| $H_{39}$ - $C_{20}$ - $H_{40}$                    | 108.2477 | 109.5199 | 109.44 |
| N <sub>19</sub> -C <sub>21</sub> -H <sub>41</sub> | 109.3509 | 109.5000 | 109.50 |
| N <sub>19</sub> -C <sub>21</sub> -H <sub>42</sub> | 113.3977 | 109.4413 | 109.46 |
| $N_{19}$ - $C_{21}$ - $H_{43}$                    | 109.9561 | 109.4623 | 109.46 |
| $H_{41}$ - $C_{21}$ - $H_{42}$                    | 107.8124 | 109.5199 | -      |
| $H_{41}$ - $C_{21}$ - $H_{43}$                    | 108.0158 | 132.0854 | -      |
| $H_{42}$ - $C_{21}$ - $H_{43}$                    | 108.1503 | 109.5199 | -      |
| $C_{16}$ - $H_{35}$ - $H_{40}$                    | -        | 36.7166  | -      |
| $C_{20}$ - $H_{40}$ - $H_{35}$                    | -        | 151.0333 | -      |
| $C_{12}$ - $H_{45}$ - $H_{43}$                    | -        | 166.8127 | -      |
| $C_{12}$ - $H_{45}$ - $Cl_{44}$                   | -        | -        | -      |
| $O_{13}$ - $H_{45}$ - $Cl_{44}$                   | 170.7082 | -        | -      |
| $N_{19}$ - $C_{21}$ - $H_{41}$                    | -        | -        | -      |
| $N_{19}$ - $C_{21}$ - $H_{42}$                    | -        | -        | -      |
| $N_{19}$ - $C_{21}$ - $H_{43}$                    | -        | -        | -      |
| $H_{41}$ - $C_{21}$ - $H_{42}$                    | -        | -        | -      |
| $H_{41}$ - $C_{21}$ - $H_{43}$                    | -        | -        | -      |
| $H_{42}$ - $C_{21}$ - $H_{43}$                    | -        | -        | -      |
| $C_{16}$ -H <sub>35</sub> -H <sub>40</sub>        | -        | -        | -      |
| $C_{20}$ -H <sub>40</sub> -H <sub>35</sub>        | -        | -        | -      |
| $C_{12}$ -H <sub>45</sub> -H <sub>43</sub>        | -        | -        | -      |
| $C_{12}$ -H <sub>45</sub> -Cl <sub>44</sub>       | -        | -        | -      |
| $O_{13}$ - $H_{45}$ - $Cl_{44}$                   | 170.7082 | 166.8127 | -      |

Fig.1 Atom Numbering Scheme of Ranitidine Hydrochloride



| Table.2 Vib | rational B | and Assi | gnments |
|-------------|------------|----------|---------|
|-------------|------------|----------|---------|

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| intensityintensityintensity $3570$ - $3589$ $0.59$ $3454$ $7.21$ N-H stretching $3254$ - $3285$ $0.66$ $3284$ $6.88$ C-H stretching $3191$ $3188$ $3140$ $0.34$ $3200$ $53.88$ CH <sub>2</sub> asym stretching- $3177$ $3110$ $0.84$ $3125$ $158.55$ CH <sub>2</sub> sym stretching $3097$ $3097$ $3035$ $0.66$ $3114$ $88.75$ CH <sub>2</sub> /CH asym stretching $3014$ $3014$ - $0.73$ $3019$ $33.28$ CH <sub>2</sub> /CH sym stretching $2982$ - $2948$ CH <sub>3</sub> /CH <sub>2</sub> /CH stretching $2973$ $2961$ $2939$ $2.32$ CH <sub>3</sub> /CH <sub>2</sub> /CH stretching $2944$ $2943$ $2925$ $3.69$ C-H stretching- $2920$ - $0.38$ C-H stretching- $C-H$ stretching- $C-H$ stretching- |  |
| 3570- $3589$ $0.59$ $3454$ $7.21$ N-H stretching $3254$ - $3285$ $0.66$ $3284$ $6.88$ C-H stretching $3191$ $3188$ $3140$ $0.34$ $3200$ $53.88$ CH <sub>2</sub> asym stretching- $3177$ $3110$ $0.84$ $3125$ $158.55$ CH <sub>2</sub> sym stretching $3097$ $3097$ $3035$ $0.66$ $3114$ $88.75$ CH <sub>2</sub> /CH asym stretching $3014$ $3014$ - $0.73$ $3019$ $33.28$ CH <sub>2</sub> /CH sym stretching $2982$ - $2948$ CH <sub>3</sub> /CH <sub>2</sub> /CH stretching $2973$ $2961$ $2939$ $2.32$ CH <sub>3</sub> /CH <sub>2</sub> /CH stretching $2944$ $2943$ $2925$ $3.69$ C-H stretching- $2920$ - $0.38$ C-H stretching- $CH$ stretching- $C$ -H stretching $2920$ - $0.38$ C-H stretching  |  |
| $3254$ - $3285$ $0.66$ $3284$ $6.88$ $C-H$ stretching $3191$ $3188$ $3140$ $0.34$ $3200$ $53.88$ $CH_2$ asym stretching- $3177$ $3110$ $0.84$ $3125$ $158.55$ $CH_2$ sym stretching $3097$ $3097$ $3035$ $0.66$ $3114$ $88.75$ $CH_2/CH$ asym stretching $3014$ $3014$ - $0.73$ $3019$ $33.28$ $CH_2/CH$ sym stretching $2982$ - $2948$ $CH_3/CH_2/CH$ stretching $2973$ $2961$ $2939$ $2.32$ $CH_3/CH_2/CH$ stretching $2944$ $2943$ $2925$ $3.69$ C-H stretching- $2920$ - $0.38$ C-H stretching                                                                                                                                                                                                      |  |
| $3191$ $3188$ $3140$ $0.34$ $3200$ $53.88$ $CH_2$ asym stretching $ 3177$ $3110$ $0.84$ $3125$ $158.55$ $CH_2$ sym stretching $3097$ $3035$ $0.66$ $3114$ $88.75$ $CH_2/CH$ asym stretching $3014$ $3014$ - $0.73$ $3019$ $33.28$ $CH_2/CH$ sym stretching $2982$ - $2948$ $CH_3/CH_2/CH$ stretching $2973$ $2961$ $2939$ $2.32$ $CH_3/CH_2/CH$ stretching $2944$ $2943$ $2925$ $3.69$ CH stretching- $2920$ - $0.38$ C-H stretching                                                                                                                                                                                                                                                                    |  |
| - $3177$ $3110$ $0.84$ $3125$ $158.55$ $CH_2$ sym stretching $3097$ $3097$ $3035$ $0.66$ $3114$ $88.75$ $CH_2/CH$ asym stretching $3014$ $3014$ - $0.73$ $3019$ $33.28$ $CH_2/CH$ sym stretching $2982$ - $2948$ $CH_3/CH_2/CH$ stretching $2973$ $2961$ $2939$ $2.32$ $CH_3/CH_2/CH$ stretching $2944$ $2943$ $2925$ $3.69$ CH stretching- $2920$ - $0.38$ C-H stretching                                                                                                                                                                                                                                                                                                                              |  |
| $3097$ $3097$ $3035$ $0.66$ $3114$ $88.75$ $CH_2/CH$ asym stretching $3014$ $3014$ - $0.73$ $3019$ $33.28$ $CH_2/CH$ sym stretching $2982$ - $2948$ $CH_3/CH_2/CH$ stretching $2973$ $2961$ $2939$ $2.32$ $2944$ $2943$ $2925$ $3.69$ CH_3/CH_2/CH stretching- $2920$ - $0.38$ C-H stretching                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| $3014$ $3014$ $ 0.73$ $3019$ $33.28$ $CH_2/CH$ sym stretching $2982$ $ 2948$ $   CH_3/CH_2/CH$ stretching $2973$ $2961$ $2939$ $2.32$ $  CH_3/CH_2/CH$ stretching $2944$ $2943$ $2925$ $3.69$ $  C-H$ stretching $ 2920$ $ 0.38$ $  C-H$ stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 2973       2961       2939       2.32       -       -       CH <sub>3</sub> /CH <sub>2</sub> /CH stretching         2944       2943       2925       3.69       -       -       C-H stretching         -       2920       -       0.38       -       -       C-H stretching         -       2926       -       0.38       -       -       C-H stretching                                                                                                                                                                                                                                                                                                                                                |  |
| 2944       2943       2925       3.69       -       -       C-H stretching         -       2920       -       0.38       -       -       C-H stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| - 2920 - 0.38 C-H stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| -   2863   -   -   -   C-H stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 2775 2813 2775 C-H stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1715 - 1695 1.19 1764 25.89 C=C stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1618 - 1600 0.36 1606 177.06 C=C stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 1590 1600 1584 0.90 1584 219.17 C-C stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| - 1587 1551 10.16 1569 40.85 NO <sub>2</sub> asym stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| - 1554 1530 0.54 1533 26.98 NO <sub>2</sub> sym stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1498 1537 1499 42.57 1481 486.40 H-C-H sym stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 1417 1483 1454 43.10 1447 37.40 C-N sym stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| - 1450 1440 4.42 1442 15.37 C-C sym stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| - 1437 1400 8.77 1391 57.03 C-C-H out of plane bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1379 1408 1382 5.75 1380 128.03 NO <sub>2</sub> sym stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 1304 1376 1308 4.02 1311 11.42 C-N sym stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1263 1306 1263 .069 1280 27.94 C-H in plane bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| - 1263 1256 10.69 1246 8.99 C-H out of plane bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 1221 1248 1231 1.52 1219 8.32 C-H out of plane bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1194 1228 1184 2.67 1183 27.88 C-H in plane bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 1164 1186 1173 16.46 1159 37.11 C-H in plane bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 1133 1164 1144 39.26 1134 25.31 C-H deformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 1122 1135 1127 53.83 1116 9.14 C-C stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1074 1102 1092 7.10 1112 51.77 C-H in plane deformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 1045 1073 1065 2630 1074 6.31 C-C stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1021 1046 1034 186.68 1061 11.71 C-N stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 1005 1023 1011 18.45 988 1.31 C-C-C bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 991 1007 996 7.91 973 3.98 C-O asym stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 956 975 975 26.84 938 23.20 H-C-C bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 925 955 886 12.64 894 24.87 C-C stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 879 - 878 3.05 873 17.61 C-C stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 859 880 857 48.14 845 38.48 C-C stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 799         863         789         12.78         812         2.06         C-H out of plane bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 761 802 762 9.27 743 56.30 C-C-C bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 698 756 726 28.25 703 0.86 H-C-C bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 660 720 680 3.70 680 5.30 C-C-C bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 641 $661$ $638$ $72.22$ C-H out of plane bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 523         522         495         10.37         517         0.32         C-H out of plane bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

# **Table.3** Experimental and Calculated Absorption Wavelength Oscillator Strength and Transition of Ranitidine Hydrochloride by DFT Method

| Excitation      | Singlet A | Energy<br>(eV) | max         | Experimental | Oscillator<br>strength | Transition               |
|-----------------|-----------|----------------|-------------|--------------|------------------------|--------------------------|
|                 |           |                |             |              |                        |                          |
| Excited State 1 | 0.63280   | 4.3154         | 287.03nm    | 325.05nm     | 0.0257                 | HOMO-4→LUMO<br>HOMO LUMO |
| 89 - 94         | 0.23047   |                |             |              |                        | HOMO-LOMO                |
| 93 – 94         |           |                |             |              |                        |                          |
| Excited State 2 |           |                |             |              |                        |                          |
| 89-94           | -0.18571  | 4 7782         | 259 48 nm   | 228 50nm     | 0 2545                 | HOMO-4 JUMO              |
| 91-94           | 0.20362   | 4.7762         | 237.40 IIII | 220.501111   | 0.2545                 | HOMO-2→LUMO              |
| 92-94           | 0.32139   |                |             |              |                        | HOMO-1→LUMO              |
| 93-94           | 0.50541   |                |             |              |                        | HOMO-LUMO                |
|                 |           |                |             |              |                        |                          |
| Excited State 3 |           |                |             |              |                        |                          |
| 89-94           | 0.15122   | 4.8147         | 257.51nm    | 198.00nm     | 0.1341                 | HOMO-4→LUMO              |
| 90-94           | -0.15881  |                |             |              |                        | HOMO-3→LUMO              |
| 91-94           | 0.22810   |                |             |              |                        | HOMO-2→LUMO              |
| 92-94           | 0.51900   |                |             |              |                        | HOMO-1→LUMO              |
| 93-94           | -0.25897  |                |             |              |                        | HOMO-LUMO                |

## Fig.2 FTIR Spectrum of Ranitidine Hydrochloride



## Fig.3 FT-Raman Spectrum of Ranitidine Hydrochloride



# **Table.4** Mullikan Atomic Charges of Ranitidine Hydrochloride at HF, B3LYP Methods with 6-<br/>31G(d,p) Basis Set

| Atoms           | B3LYP/631G(d,p) | HF/6-31G(d,p) |
|-----------------|-----------------|---------------|
| C <sub>1</sub>  | 0.686027        | 0.530046      |
| $C_2$           | -0.157582       | -0.029443     |
| N <sub>3</sub>  | -0.705524       | -0.553581     |
| $N_4$           | -0.723149       | -0.542816     |
| N <sub>5</sub>  | 0.555955        | 0.049252      |
| $O_6$           | -0.487634       | -0.429087     |
| O <sub>7</sub>  | -0.566328       | -0.486974     |
| C <sub>8</sub>  | -0.153029       | -0.189678     |
| C <sub>9</sub>  | -0.049428       | -0.082027     |
| C <sub>10</sub> | -0.390170       | -0.340209     |
| S <sub>11</sub> | 0.142775        | 0.098112      |
| C <sub>12</sub> | -0.407371       | -0.415912     |
| O <sub>13</sub> | -0.643034       | -0.502179     |
| C <sub>14</sub> | 0.336944        | 0.335504      |
| C <sub>15</sub> | -0.217259       | -0.148682     |
| C <sub>16</sub> | -0.212575       | -0.141055     |
| C <sub>17</sub> | 0.343299        | 0.324143      |
| C <sub>18</sub> | -0.033360       | -0.094587     |
| N <sub>19</sub> | -0.592079       | -0.407572     |
| C <sub>20</sub> | -0.137952       | -0.167514     |
| C <sub>21</sub> | -0.131337       | -0.158340     |
| $H_{22}$        | 0.175319        | 0.108692      |
| $H_{23}$        | 0.312305        | 0.272443      |
| $H_{24}$        | 0.368397        | 0.308937      |
| H <sub>25</sub> | 0.146574        | 0.133811      |
| $H_{26}$        | 0.155953        | 0.142761      |
| H <sub>27</sub> | 0.134204        | 0.129060      |
| H <sub>28</sub> | 0.161340        | 0.141566      |
| H <sub>29</sub> | 0.153683        | 0.134891      |
| H <sub>30</sub> | 0.160462        | 0.148159      |
| H <sub>31</sub> | 0.149868        | 0.142596      |
| H <sub>32</sub> | 0.170493        | 0.156007      |
| H <sub>33</sub> | 0.170275        | 0.154547      |
| H <sub>34</sub> | 0.169233        | 0.104358      |
| H <sub>35</sub> | 0.179252        | 0.111891      |
| H <sub>36</sub> | 0.147701        | 0.126075      |
| H <sub>37</sub> | 0.121820        | 0.097455      |
| H <sub>38</sub> | 0.122978        | 0.111561      |
| H <sub>39</sub> | 0.092269        | 0.085636      |
| H <sub>40</sub> | 0.129332        | 0.11090/      |
| H <sub>41</sub> | 0.123291        | 0.110/54      |
| H <sub>42</sub> | 0.092285        | 0.086285      |
| H <sub>43</sub> | 0.123485        | 0.110/42      |
|                 | - 0.228//5      | -0.231230     |
| $H_{45}$        | 0.211064        | 0.188694      |

# Fig.4 UV-V is Spectrum of Ranitidine Hydrochloride



|                | F       | RHF-cc-PVD    | Z                  |         |               | B3LY              | P/cc-PVDZ |               |                    |         |
|----------------|---------|---------------|--------------------|---------|---------------|-------------------|-----------|---------------|--------------------|---------|
|                | a.u     | esu           |                    | a.u     | esu           |                   | a.u       | esu           |                    | a.u     |
|                |         | $x(10^{-24})$ |                    |         | $x(10^{-33})$ |                   |           | $x(10^{-24})$ |                    |         |
| $\mu_x$        | -2.868  | -0.0425       | $\beta_{xxx}$      | 465.239 | 4019.19       | $\mu_{x}$         | -2.675    | -0.3965       | $\beta_{xxx}$      | 708.733 |
| μy             | -1.166  | -0.1728       | $\beta_{xxy}$      | -36.336 | -313.91       | μy                | -1.133    | -0.1680       | $\beta_{xxy}$      | -62.594 |
| μz             | -1.199  | -0.1776       | $\beta_{xyy}$      | 163.487 | -1412.38      | μz                | -1.092    | -0.1619       | $\beta_{xyy}$      | 105.878 |
| μ              | 5.513   | 0.0817        | $\beta_{yyy}$      | -8.222  | -71.03        | μ                 | 4.819     | 0.7142        | $\beta_{yyy}$      | 53.165  |
| $\alpha_{xx}$  | 259.907 | 38.518        | $\beta_{xxz}$      | 173.373 | 1497.76       | $\alpha_{xx}$     | 291.412   | 43.1872       | $\beta_{xxz}$      | 153.119 |
| $\alpha_{xy}$  | 9.901   | 1.467         | $\beta_{xyz}$      | -43.877 | -379.06       | $\alpha_{xy}$     | 8.018     | 1.1882        | $\beta_{xyz}$      | -24.525 |
| $\alpha_{yy}$  | 189.859 | 28.137        | $\beta_{yyz}$      | -93.575 | -808.40       | $\alpha_{yy}$     | 197.777   | 29.3105       | $\beta_{yyz}$      | -37.133 |
| $\alpha_{xz}$  | 16.303  | 2.416         | $\beta_{xzz}$      | 54.488  | 470.72        | $\alpha_{xz}$     | 20.083    | 2.9764        | $\beta_{xzz}$      | 53.998  |
| $\alpha_{yz}$  | 7.041   | 1.043         | $\beta_{yzz}$      | -89.708 | -774.98       | $\alpha_{\rm yz}$ | 7.703     | 1.1416        | $\beta_{yzz}$      | -37.389 |
| $\alpha_{zz}$  | 163.183 | 24.183        | β <sub>zzz</sub>   | -59.740 | -516.09       | $\alpha_{zz}$     | 170.693   | 25.2967       | β <sub>zzz</sub>   | -61.555 |
| $\alpha_{tot}$ | 204.316 | 30.279        | $\beta_{tot}(esu)$ | 660.76  | 5708.30       | $\alpha_{tot}$    | 219.959   | 32.5979       | $\beta_{tot}(esu)$ | 495.385 |
| Δα             | 516.510 | 76.546        |                    |         |               | Δα                | 273.921   | 40.595        |                    |         |
|                |         |               |                    |         |               |                   |           |               |                    |         |

# **Table.5** The Electric Dipole Moment ( $\mu$ ), Polarizability ( $\alpha$ ), and First hHyperpolarizability ( $\beta$ ) of<br/>Ranitidine Hydrochloride

# **Table.6** Significant Donor –Acceptor Interactions of Ranitidine Hydrochloride and their Second Order Perturbation Energies

| Donor NBO(i) | Acceptor (NBO j) | E(2) <sup>a</sup> Kcal/mol | Ej - Ei <sup>b</sup><br>(a.u) | F(i,j) <sup>c</sup><br>(a.u) |
|--------------|------------------|----------------------------|-------------------------------|------------------------------|
|              | BD*(2) N5-O6     | 30.57                      | 0.19                          | 0.078                        |
|              | BD*(2) N5-O6     | 8.78                       | 0.34                          | 0.059                        |
|              | BD*(2) C16-C17   | 12.95                      | 0.32                          | 0.060                        |
|              | BD*(2) C14-C15   | 14.63                      | 0.31                          | 0.063                        |
|              | BD*(2) C1-C2     | 27.45                      | 0.31                          | 0.086                        |
|              | BD*(2) C1-C2     | 58.34                      | 0.28                          | 0.116                        |
|              | BD*(1) C2-N5     | 11.68                      | 0.64                          | 0.078                        |
|              | BD*(1) N5-O7     | 22.12                      | 0.73                          | 0.115                        |
|              | BD*(1) N5-O6     | 20.58                      | 0.79                          | 0.115                        |
|              | BD*(1) N5-O6     | 136.79                     | 0.16                          | 0.141                        |
|              | BD*(1) C14-C15   | 27.54                      | 0.38                          | 0.092                        |
|              | BD*(2) C16-C17   | 28.13                      | 0.39                          | 0.094                        |
|              | BD*(1) C21-H42   | 8.24                       | 0.72                          | 0.070                        |
|              | BD*(2) C1-C2     | 26.37                      | 0.10                          | 0.063                        |

a E(2) means energy of hyper conjugative interaction(stabilization energy)

b Energy difference between donor and acceptor i and j NBO orbitals

c F(i,j) is the fock matrix element between i and j NBO orbitals

| Parameters                               | HF         | B3LYP     |  |
|------------------------------------------|------------|-----------|--|
|                                          | 1004 40552 | 1011 002  |  |
| lotal Energy (a.u)                       | 1804.49553 | -1811.803 |  |
| Zero point Vibrational Energy (Lcal/mol) | 247.08061  | 230       |  |
| Rotational Temperature (K)               | 0.02364    | 0.02390   |  |
|                                          | 0.00316    | 0.00325   |  |
|                                          | 0.00308    | 0.00314   |  |
| Rotational constants (GHz)               | 0.49258    | 0.49794   |  |
|                                          | 0.06577    | 0.06782   |  |
|                                          | 0.06412    | 0.06540   |  |
| Entropy (cal/mol/-kelvin)                |            |           |  |
| Total                                    | 189.625    | 191.621   |  |
| Translational                            | 43.453     | 43.453    |  |
| Rotational                               | 36.291     | 36.230    |  |
| Vibrational                              | 109.881    | 111.938   |  |
| Heat Capacity (cal/mol-kelvin)           |            |           |  |
| Total                                    | 86.878     | 92.025    |  |
| Translational                            | 2.981      | 2.981     |  |
| Rotational                               | 2.981      | 2.981     |  |
| Vibrational                              | 80.916     | 80.064    |  |
| Energy (kal/mol)                         |            |           |  |
| Total                                    | 263.023    | 246.640   |  |
| Translational                            | 0.889      | 0.889     |  |
| Rotational                               | 0.889      | 0.889     |  |
| Vibrational                              | 261.245    | 244.862   |  |

# **Table.7** The Calculated Thermodynamic Parameters of Ranitidine Hydrochloride

# **Table.8** Thermodynamic properties for the Ranitidine hydrochloride obtained by B3LYP/6-31G (d,p) DFT calculations

| T(K) | S (J/molK) | Cp (J/molK) | ddH (KJ/Mol) |
|------|------------|-------------|--------------|
| 100  | 503.71     | 201.02      | 13.07        |
| 200  | 675.55     | 304.22      | 38.45        |
| 298  | 825.64     | 404.76      | 73.21        |
| 300  | 818.15     | 406.67      | 73.96        |
| 400  | 948.97     | 505.93      | 119.68       |
| 500  | 1071.37    | 591.75      | 174.69       |
| 600  | 1185.74    | 662.59      | 237.52       |
| 700  | 1292.40    | 720.93      | 306.79       |
| 800  | 1391.93    | 769.51      | 381.38       |
| 900  | 1484.99    | 810.42      | 460.44       |
| 1000 | 1572.23    | 845.15      | 543.26       |

|                 | B3LYP              |                | HF                 |                |         |
|-----------------|--------------------|----------------|--------------------|----------------|---------|
| Atom position   | Absolute sheilding | Chemical shift | Absolute shielding | Chemical shift | Exp     |
| C <sub>1</sub>  | 41.460             | 158.524        | 33.807             | 166.177        | 155.049 |
| $C_2$           | 89.790             | 110.194        | 99.385             | 100.599        | 113.677 |
| $C_8$           | 161.473            | 38.512         | 172.320            | 27.664         | 39.996  |
| C <sub>9</sub>  | 147.603            | 52.381         | 161.834            | 38.150         | 39.996  |
| C <sub>10</sub> | 152.358            | 47.627         | 168.668            | 31.316         | 46.469  |
| C <sub>12</sub> | 156.581            | 43.404         | 172.311            | 27.673         | 45.618  |
| $C_{14}$        | 48.930             | 151.054        | 53.821             | 146.163        | 142.128 |
| C <sub>15</sub> | 84.226             | 115.758        | 89.822             | 110.163        | 113.128 |
| $C_{16}$        | 87.418             | 112.567        | 94.210             | 105.774        | 107.389 |
| C <sub>17</sub> | 40.820             | 159.164        | 44.322             | 155.662        | 155.049 |
| $C_{18}$        | 135.788            | 64.196         | 151.028            | 48.957         | 51.075  |
| $C_{20}$        | 150.077            | 49.907         | 162.855            | 37.130         | 46.640  |
| $C_{21}$        | 146.174            | 53.810         | 159.495            | 40.489         | 51.075  |
| $C_{44}$        | 946.912            | -746.927       | 981.334            | -781.349       | -       |
| H <sub>22</sub> | 25.677             | 6.920          | 25.589             | 7.008          | 5.183   |
| H <sub>23</sub> | 29.171             | 3.426          | 29.492             | 3.105          | 3.329   |
| H <sub>24</sub> | 22.182             | 10.414         | 22.263             | 10.334         | -       |
| H <sub>25</sub> | 28.978             | 3.618          | 29.209             | 3.388          | -       |
| H <sub>26</sub> | 28.816             | 3.780          | 29.132             | 3.465          | -       |
| H <sub>27</sub> | 28.956             | 3.641          | 29.263             | 3.334          | -       |
| H <sub>28</sub> | 28.850             | 3.747          | 29.238             | 3.359          | -       |
| H <sub>29</sub> | 28.743             | 3.853          | 29.189             | 3.408          | -       |
| $H_{30}$        | 28.912             | 3.685          | 29.609             | 2.988          | -       |
| H <sub>31</sub> | 29.294             | 3.303          | 29.867             | 2.730          | 2.847   |
| H <sub>32</sub> | 27.817             | 4.780          | 28.373             | 4.224          | 2.847   |
| H <sub>33</sub> | 28.507             | 4.090          | 29.145             | 3.452          | 4.842   |
| $H_{34}$        | 25.560             | 7.036          | 25.686             | 6.910          | -       |
| H <sub>35</sub> | 25.339             | 7.257          | 25.525             | 7.072          | -       |
| H <sub>36</sub> | 28.147             | 4.450          | 28.697             | 3.900          | -       |
| H <sub>37</sub> | 28.607             | 3.990          | 29.183             | 3.414          | -       |
| H <sub>38</sub> | 29.655             | 2.942          | 29.989             | 2.608          | 3.329   |
| H <sub>39</sub> | 30.143             | 2.454          | 30.558             | 2.039          | 2.847   |
| $H_{40}$        | 29.226             | 3.370          | 29.651             | 2.946          | 2.304   |
| $H_{41}$        | 29.417             | 3.179          | 29.736             | 2.861          | 2.847   |
| $H_{42}$        | 29.628             | 2.968          | 30.114             | 2.483          | -2.304  |
| $H_{43}$        | 29.380             | 3.217          | 29.751             | 2.845          | -       |
| $H_{45}$        | 27.239             | 5.358          | 23.297             | 6.300          | -       |

# Fig.5 HUMO and LUMO of Ranitidine Hydrochloride



LUMO (First Excited State); ELUMO= -01240302



HOMO (ground State); EHOMO = -01417632





Fig.7 Thermodynamic properties of Ranitidine hydrochloride







Fig.8(b) 1H NMR Spectrum of Ranitidine Hydrochloride



The carbon atom  $C_{17}$  appearing at very higher chemical shift value (159.164ppm) than the other carbon atoms and hence the shielding is very small (Table.9). The more electron rich atoms are C<sub>8</sub>, C<sub>9</sub>, C<sub>10</sub>, C<sub>12</sub>, C<sub>18</sub>, C<sub>20</sub>, C<sub>21</sub>, and Cl<sub>44</sub>. These are highly shielded atoms and hence appear at downfield (lower chemical shift). For visual comparison, the observed and calculated <sup>13</sup>C and <sup>1</sup>H NMR spectra of the titled compound were presented in Fig.8a and Fig.8b. Apart from that deviations are due to the theoretical calculations belong to isolated molecules in gaseous phase and experimental results belong to molecules in solid state.

#### Conclusion

The molecular geometry of Ranitidine hydrochloride was optimized by both DFT-B3LYP and HF methods using 6-31G(d,p) as basis set. A B3LYP method treat the electronic energy as a function of the electron density of all electrons simultaneously and thus includes electron correlation effect. The complete molecular

structural parameters and thermodynamic properties of the compound have been obtained. The vibrational frequencies are compared both experimentally as well as theoretically. The energies of Molecular orbital's, absorption wavelength  $(\Box_{max})$ , oscillator strength excitation energies of the compound were determined and compared with the experimental values. The dipole moment, polarizability and the Hyperpolarizability of the compound studied have been calculated by B3LYP method with 6-31G(d,p) basis set. NBO population analysis is suitable for the estimation of atomic charges. The HOMO-LUMO energy explains the eventual charge transfer interactions taking place within the molecule. The FT-IR, FT-Raman and MNR (<sup>1</sup>H and <sup>13</sup>C) spectral studies were carried out both DFT-B3LYP and HF methods using 6-31G(d,p). The UV spectrum was measured in methanol solvent. To sum up, this study not only shows the way to the identification of the molecules but also the researchers for the future studies in both the fundamental researchers and applications in technology and industry.

### References

- Ashdown A, Kletz TA(1948) J Chem. Soc 1454-1456. DOI 10, 1039/JR948000454.
- Becke D, J.Phys.Chem98:3468(1993).
- Barbara H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, Wiley India Ed., 2010.
- Dave.B.S, Amin A.F, Patel M.M. Gastro retentive Drug Delivery System of Ranitidine Hydrochloride: Formulation and In Vitro Evaluation.A ApsPharm, SciTech.2004;5(2):34.
- Erdogdu Y, O. Unsalan, M. Amalanathan, I. Hubert Joe, J.Mol.Struct.980 (2010)24-30.

- Gunasekaran, Natarajan R.K, and Santhosam K., Asian J.Chem, 15(2003) 1347.
- Gunasekaran.S. Varadhan S.R., and Manoharan.K, Indian J.Phys67 (B) (1993)95.
- Gunasekaran .S, Natarajan R.K., Rahika R. and Shymala D., Indian J.Phys79 (5),(2005)509.
- Gunasekaran S, P.Arunbalaji, S.Seshadri, S. Muthu, Indian J.Pure Appl phys,46(2008) 162-168.
- Gunasekaran .S, Ponnambalam.S, Muthu.S, Mariappan.L, Asian J.phys, 2003.16(1), 51.
- Hsu C.S, Spectrosc. Rev1974, 7,439.
- Huey. R G.M Morris, A J Olson, J.Comput Chem 28(2007) 1145.
- International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN: 0974-4304 Vol.2, No.3, pp 2071- 2074, July Sept 2010.
- Keith GT, In; Gennaro, AR eds., Remington: The Science and Practice of Pharmacy, 20<sup>th</sup> Ed., Vol-II, Maryland, USA: Lippincott Williams and Wilkins; 2000, P.1225.
- Krishnakumar.V, Balachandran.V, 2005, FTIR and FT Raman spectra, vibrational assignments and density functional theory calculations and 2(methylthio) aniline, Spectrochem.Acta.,A61, 1811-9.
- Krishnakumar.V, Parasuraman. K. and Natarajan.A, Indian Journal of pure Applied phys.36 171(1998).
- Kleinman D.A, Phys.Rev. 126 (1962) 1977-1979.
- Kosar B, Albayrak C, Spectrochim. Acta, part A 87 (2011) 160-167.
- Jone Pradeepa. S, Sundraganesan .N, Spectrochim.Acta 125 (2014) 211-221.
- Martindale, The Extra Pharmacopoeia, 30 Ed., The Pharmaceutical press, London1993, P.770.

- Muthu. S, Ramachandran G, Uma Maheswari. J, Spectrochim.Acta A 93(2012) 214-222.
- Mullikan R.S, J.Chem.Phys 23 (1955)1833-1841.
- Rao. C.N.R and Venkataraghavan. R, Can.j.Chem.42, 43(1964).
- Rao. C.N.R Chemical Applications of infrared spectroscopy, Academic press Newyork(1963).
- Sagdine.S, Kandemirli.F and S.H Bayari Abinitio and density functional computations of the Vibrational spectrum, molecular geometry and some molecular properties of the anti depressant drug steraline (Zoloft) hydrochloride, sepctrochim, Acta A66 (2)2007.
- Sortur.V, et al, Fourier transforms infrared and Raman spectra, ab initio calculations and assignment for 6methyl-4-bromomethyl coumarin, J.Spectrochim Acta. A 64(2006)301-307.
- Seshadri. S, Gunasekaran, Muthu.S, J.Raman Spectrosc,40(2009)639.
- Silverstein R.M BasslerG.C&Morrill J.C Spectrophotometric Identification of Organic Compounds (Newyork: johnwiley)(1981).
- Shoba D, Periandy.S, Karabacak.M, Ramalingam.S, Spectrochim.Acta part A Mol.Biomol. Spectrosc, 83 (2011 540-552.
- Sarojini K, Krishnan H, Charles C. Kanakam, Muthu.S, Spectrochim. Acta 108 (2013) 159-170.
- Sutton L.E, Tables of Interatomic Distance and configuration in molecules and Ions, Chemical society, Burlington House, WI, 1958.
- Uesugi.Y, M. Mizuno.M., Shimojima.A, Takahashi.H, J.Phys. Chem, A101:268(1997).

- Venkataramana Rao, P and Ramana Rao G. Spectrochim Acta, Part A, 58, 3205(2002).
- Vijakumar T, Joe I.H, Nair C, Jayakumar .V, Chem. Phys.343 (2008) 83-99.
- Subashchandrabose S, Akill R. Krishnan, Saleem H, Parameswari R, Sundraganesan N, Thanigachalam.V, Manikandan.G, Spectrochi. Acta 77A (2010) 877-884.
- Varsanyi. G, Assignment for Vibrational spectra of Seven Hundred Benzene derivatives, <sup>1</sup>⁄<sub>2</sub> Academic kiaclo, Budapest, 1973.
- Wilson.B.E (Jr), Decius .C.D and Cross.C.P, Molecular vibrations, McGraw-Hill, New York (1995).
- Xavier Jesu Raja.S., William A and Gunasekaran.S Orient J.Chem., 10(1994)3.